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Time decay of the remanent magnetization in theÁJ spin glass model atTÄ0
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Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the6J
Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic
interactions has been investigated. Starting from the saturation, the magnetization per spinm reveals a slow
decrease with time, which can be approximated by a power law:m(t)5m`1(t/a0)a1, a1,0. Moreover, its
relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable
isoenergetic microstates remaining magnetized. Such behavior is discussed in terms of a random walk that the
system performs on its available configuration space.
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I. INTRODUCTION

Spin glasses are systems that, at temperatures below
so-called glass-transition temperatureTg , find themselves in
states with frozen disorder, i.e., no long-range pattern
order typical for ordered magnets is present. Their proper
are determined by competing ferromagnetic and antife
magnetic exchange interactions that are randomly distribu
in the system. Both the competition among the different
teractions between the magnetic moments and their ran
distribution all over a given system are likely to contribu
significantly to such unusual glassy behavior. From the t
oretical point of view, they can be discussed in terms of
coarse-grained free energy. Namely, due to accidental de
eracy present in such systems, belowTg their free-energy
landscape becomes extremely rough, with many lo
minima corresponding to the same macroscopically obse
properties but with entirely different microscopic states
the system phase space. The minima~valleys! are separated
from each other by some energy barriers, and once a sy
finds itself in one of them, it might take a lot of time o
laboratory time scales to transit to the others. Thus, the
served properties of spin glasses may only correspon
those of one single valley in which the system happens to
and as a result, ergodicity is practically broken@1,2#. In other
words, spin glasses can be seen as systems whose dyn
at low temperatures is extremely slow and whose proper
measured in real experiments always correspond to situa
out of equilibrium. Very good evidence for this nonstatio
ary dynamics is the response of the system ac susceptib
to an oscillating field, i.e., its dependence both on time a
frequency. Another example is the slow decay of reman
magnetizations with time@1,2#. The thermoremanent magne
tization ~TRM! is measured by cooling the sample in a no
zero magnetic fieldH from above the glass-transition tem
peratureTg to a temperatureT below it and then switching
off the field. The isothermal remanent magnetization~IRM!
is measured by zero-field cooling of the sample in the sa
way as before, then turning on the field, and subseque
turning it off. In addition, in both cases the experimen
results show that for small fields applied to the sample,
remanent magnetization is strongly affected by the so-ca
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waiting time at which the sample is kept at constant tempe
ture before the external field is changed@3#. According to the
decay of both the remanent magnetization and the ene
the experimental results depend on the observation times
ter the field is switched off in all measurements. The abo
nonstationary dynamics has been described by a fair var
of functions. The most important ones include power la
logarithmic, stretched exponential, and others, and the q
tion of judging which is the most universal is still far from
decided@3–5#. Additionally, as some experiments indicat
the remanent magnetization decays so slowly with time t
some nonzero remanence is still observed over macrosc
time scales, particularly at very low temperatures@6#. Relax-
ation time measurements in CeNi0.8Cu0.2 below the spin
glass temperature 6 K show that the decay time increas
drastically with a distinct tendency to a state with nonze
magnetization, which is higher the lower the temperature
@7#. The theoretical background of such a property is rat
unclear@6#.

One of the simplest theoretical models of spin glasse
the Edwards-Anderson~EA! model. Ising spins are located a
each site of a lattice with randomly distributed ferromagne
and antiferromagnetic interactions between the nea
neighbors. Such a model reveals most of the crucial featu
typical of real spin glasses including relaxation phenome
Both the early papers@8,9# and the newer ones@10,11# on
two- ~2D! and three-dimensional~3D! models with a Gauss
ian distribution of bonds confirm that in a wide range
temperatures, a remanent magnetization occurs that de
very slowly with time t according to a power lawm(t)
;t2a with a(T);T. It is also known that in case the cou
plings among spins may take only discrete values~6J mod-
els! at sufficiently low temperatures, relaxation properties
such glasses are entirely different because of the existenc
energy gaps in their energy spectra@11,12#. As a result, for
models with bimodal distribution of interactions at tempe
tures well belowTg , a simple linear dependence ofa on
temperatureT is not satisfied, and the functional form of th
remanent magnetization decay is still rather far from be
established. It has been mentioned that the functiona(T)
might go to zero faster than linear at low temperatures@11#.
It has also been suggested that at finite small temperatu
©2001 The American Physical Society11-1
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J. KŁOS AND S. KOBE PHYSICAL REVIEW E63 066111
m(t) should coincide withm(t) at zero temperature for som
region of time, and that the relaxation causes such a sys
to remain trapped in one metastable state with a finite r
anent magnetization.

In this paper, we revisit the remanent magnetization de
of 2D 6J EA spin glass because we are interested in
extremely low-temperature relaxation properties where
power law witha(T);T breaks down. We consider the lim
iting case of zero-temperature behavior in order to find
whether the remanence phenomena observed at such c
tions could reflect the low-temperature properties of discr
systems at least qualitatively. We would also like to che
out whether or not results obtained atT50 could be treated
as continuous extrapolations of those at low but finite te
peratures, which, according to similar research done on
SK model@13#, seems rather unlikely. Actually, in@13# it is
shown that even the zero-temperature dynamics provid
decay of the magnetization that can be fitted by a power
with a constant exponenta. We carry out simulations using
the zero-temperature dynamics, which has been success
applied to various spin lattices including the persisten
probability in the weakly disordered Ising model@14#, hys-
teresis in the random-field Ising model on the Bethe latt
@15#, the question of avalanches in spin systems@16#, and
others@17#. We investigate the system relaxation process
wards low-energy states by plotting both energy and mag
tization versus the zero-temperature Monte Carlo st
~MCS! per spin, which are treated as ‘‘time units’’t. We
discuss the influence of frustration on the nonequilibriu
time properties by comparing them with corresponding pr
erties for an unfrustrated system with pure antiferromagn
interactions. Finally, we discuss the obtained results in te
of the system random walk on its configuration space.

II. MODEL AND SIMULATION

We use the Edward-Anderson spin glass model with
random and uniform distribution of discrete interactionsJi j
561 between the nearest neighbors all over a 2D squ
lattice with N sites and with periodic boundary condition
The Hamilton function of such a system in an external m
netic fieldB is

H52(
i , j

Ji j SiSj2B(
i

Si , ~1!

whereSi , Sj561 ~up/down! are Ising spins, and the sum i
the first term on the right-hand side runs over the near
neighboring lattice sites. The samples are prepared in su
way that the fraction of antiferromagnetic bonds isp50.5.
We study how the remanent magnetization decays with t
in zero magnetic field starting from the system saturat
state. The magnetization per spin is given by

m~ t !5@N1~ t !2N2~ t !#/N, ~2!

where N1 , N2 denote the number of spins up and dow
respectively. The system relaxation process is simulated
applying a version of the zero-temperature Metropolis al
rithm given by the following steps, cf.@15,17#.
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~i! Consider a sample in its saturation state~all spins up!.
~ii ! Pick a spin at random.
~iii ! Flip it only if this process does not increase the e

ergy.
~iv! Repeat steps~ii ! and~iii ! N times. So, one time unit is

defined as one MC step per spin.
~v! Record magnetization and energy as functions of th

time units.
~vi! Start again with step~ii ! to find results for the follow-

ing time step.
Thus, the above algorithm determines the system rand

walk on the configuration space in the direction of droppi
energy. It should be mentioned that a different algorith
based on the Glauber dynamics is also used in the literat
cf. @14,18,19#. Then for T50, step ~iii ! of the above-
mentioned procedure is replaced by the following one: Flip
if this process decreases the energy and flip it with the pr
ability 1

2 if this process does not change the energy.

III. RESULTS

First we consider a special system of the sizeN570
370, for which the exact ground-state energy is calcula
using a branch-and-cut algorithm by De Simoneet al. @20#.
Its energy and magnetization decays are compared
those of an unfrustrated one of the same size with so
antiferromagnetic interactions between the nearest ne
bors. No qualitative differences in the energy relaxation c
be seen, except for the fact that the ground-state energie
both systems are different~Fig. 1!. On the other hand, with
respect to the remanent magnetization decay, both sys
are entirely different and the influence of randomness
frustration on the phenomena can be observed. While
unfrustrated system moves extremely fast to the low-ene

FIG. 1. Energy per spinE ~in units of uJi j u! versus timet ~in
units of Monte Carlo steps per spin! averaged over 30 independe
runs in a frustratedN570370 system~circles! and in an unfrus-
trated one of the same size with solely antiferromagnetic inte
tions ~triangles!. The dotted horizontal line represents the exa
ground-state energy of the former. Energy axis is shifted by add
a term 2.
1-2
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unmagnetized states, the frustrated one relaxes more sl
and the isoenergetic states it finally explores still poss
nonzero magnetization~Fig. 2!. In that area, the remanen
magnetization fluctuates around a constant value, which
fers to simply flipping idle spins.

In order to describe the system dynamics more quan
tively, we have considered 10 samples of the sizeN550
350 with different distribution of bonds. Typically, we hav
performed around 2000 MC relaxation steps. In Fig. 3,
show the remanent magnetizationm(t) averaged over the
samples and over 30 independent runs for each. The be
for the dependence of the magnetization on time~for t.0! is
obtained by

m~ t !5m`1S t

a0
D a1

, a1,0. ~3!

FIG. 2. Magnetization per spinm versus timet ~in units of
Monte Carlo steps per spin! averaged over 30 independent runs f
the same systems as in Fig. 1.

FIG. 3. Magnetization per spinm versus timet ~in units of
Monte Carlo steps per spin! averaged over 10 samples of the si
N550350 and over 30 runs for each. The continuous line rep
sents the fit according to the power law~3!. The inset shows
ln@m(t)2m`# versus ln(t).
06611
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The first termm` corresponds to the average remanent m
netization of the system trapped in a subspace of low-ly
isoenergetic states after a long time of decay, whereas
second term corresponds to the nonstationary dynamics.
parameters found arem`50.059, a050.23, and a15
20.83. The inset of Fig. 3 shows ln@m(t)2m`# versus ln(t)
with m` taken from the power-law fit~3!. The observed
dispersion of the computed points for large values of timet is
due to their small fluctuations aroundm` . We have also
tested some other functions with four free parameters to
just the data. Among them, the stretched exponential
m(t)5m`1a0 exp@2(t/a1)

a2# ~for t>0!, with m`50.060,
a050.94, a150.43, anda250.35, has proved reasonab
close to it, however a bit worse than the power-law one.

IV. SUMMARY

We have investigated the remanent magnetization de
of a 2D6J EA spin glass model at zero temperature. All t
samples were initially at their saturation states and then
lowed to relax towards states with lower energy using
zero-temperature Metropolis algorithm. The observed rem
nent magnetization decay in the frustrated system was m
slower than in the unfrustrated one, whose remanent ma
tization decreased rapidly to zero. After a number of M
steps, the walk of the random system on its configurat
space practically became limited to subspaces of magnet
isoenergetic states. At that region, on the average, the re
nent magnetization fluctuated without further decrease.
calculations suggest that the time decay of the reman
magnetization can be very well represented by a sim
power-law formula with three fitting parameters. From a m
croscopic point of view, the nonexponential relaxation ph
nomena in spin glasses can be discussed in terms of ran
diffusion on the available configuration space. It is sugges
by simulations that stretched exponential relaxation beha
in glassy systems appears with the exponenta2 going to 1

3

when approaching a percolation transition in the configu
tion space, which is a multidimensional hypercube@21–23#.
The same form of the magnetization decay in a 2D ferrom
netic Ising model has been reported and some dependen
the relaxation phenomena on the system dimension has
found as well@24–26#. In the so-called trap model, the sy
tem evolves among various traps with random ‘‘trappi
times.’’ The traps are separated from each other by ene
barriers that can be crossed by thermal excitations@27,28#.
This kind of approach has been successfully used to st
low-temperature aging of a system consisting of configu
tions with random energies@29#. However, since the dynam
ics of ours is athermal, there is no such barrier crossing i
and a purely entropic interpretation might be adapted inst
@28,30#. Although for simulations at finite temperatures
mixture of ‘‘energetic’’ and ‘‘entropic’’ barriers is likely to
contribute to the phenomena of slow dynamics, one of
effects vanishes with respect to the zero temperature sim
tions. The observed slowing down of the system relaxat
could be qualitatively understood with the help of so-call
entropic traps themselves. While the point in the configu
tion space randomly searches for available paths leadin

-

1-3
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J. KŁOS AND S. KOBE PHYSICAL REVIEW E63 066111
states with lower energy, their number decreases rapidly w
time. As a result, we find that the lower the energy of t
states is that the system has reached the longer is the
period needed to leave them. This phenomenon is also
consistent with the Markov theory@32,33#. It says that every
finite Markov chain contains at least one absorbing se
which the system remains forever after falling in it~a good
example of an absorbing set is the closure of one of
ground states!. Moreover, the theory states that the probab
ity of passing to one of them with ‘‘time’’ going to infinity
tends to 1. That is, after a large number of MC steps,
available configuration space of the system becomes on
the absorbing sets, where the energy is kept constant an
magnetization fluctuates. A finite value of remanent mag
tization m` indicates that the absorbing set contains exci
states rather than ground states. This is consistent with re
results on magnetic hysteresis at zero temperature@31#. All
metastable states connected by one-spin flips without rai
energy form a local ensemble of metastable states. Whe
these states belong to a relatively large value ofm, the one-
spin interconnection with the local ensemble of ground sta
can be prohibited.

Moreover, our simulations confirm that the observed t
dency of the exponenta(T) @in the formulam(t);t2a# to
ys

i,

.

F.
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go to zero with dropping temperature seems to be in dir
contradiction to the remanent magnetization decay at exa
T50, for which a is finite. This also seems to indicate th
the violations of the power law at very low temperatur
might be due to the characteristic timet divergence@11#
rather than to the functiona(T) going to zero faster than
linear. Moreover, we think that another explanation could
suggested as well. Namely, it has been experimentally fo
that the remanent magnetizationm` decreases with increas
ing temperature@6,7#. Below a certain value of temperatur
T, the discrete structure of the system energy spectrum
likely to affect its properties significantly andm` may be-
come relevant. That means that at very low temperature
should be contained in the relaxation law, and a p
ln@m(t)2m`# versus ln(t) „instead of ln@m(t)# versus ln(t)…
could still remain linear.
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